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Abstract 

Conformal invariance is discussed assuming the equations are well defined in arbitrary 
coordinate systems. This assumption leads to some constraints on scale dimensions of 
terms, and constraints on the introduction of 'conformally invariant massive equations'. 
The six-dimensional formalism is then discussed, and is generalized to project to all con- 
formally flat spaces. Finally the imbedding of Minkowski space equations is studied. 
S0(4, 2) breaking is seen to enter due to the presence of a non-invariant scalar field, and 
a non-invariant vector field. The theorem relating invariance of the six-space equations 
under S0(4, 2) to the invariance of their corresponding four-space equations under the 
conformal group is carefully stated and proved. 

1. Introduction 

The conformaI group and conformal invariance are defined for a general 
space-time, assuming the field equations and fields are tensor densities under 
general change of coordinates. This assumption puts restrictions on the trans- 
formation properties under the Minkowski space conformal group of terms 
in the equations. In particular it implies that all terms in the equation must 
have the same scale dimension. It also makes questionable the introduction 
of 'conformatly invariant masses'. 

Conformal invariance is then examined using the six-dimensional space in 
which the conformal group is the rotation group S0(4,  2). (This was first done 
in Dirac's (1936) classic paper.) The standard projection to Minkowski space 
is generalized to a projection into any conformatly fiat space, using the 
standard methods of projecting into hyper-surfaces and quotient spaces. 

The transformation of these projections under coordinate transformations 
is carefully discussed, and conditions are formulated in a coordinate independent 
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way. It  is found that unlike many similar cases, the projection of the metric 
generated covariant derivative is not the covariant derivative generated by the 
projection of the metric. An affinity that projects to the proper covariant 
derivative is given. 

Using the formalism developed the imbedding of Minkowski space equations 
in six dimensions is studied. It is shown that in terms of six-space structures 
there are only two distinct ways to break conformal invariance, corresponding 
to the addition of mass-like terms, and to derivative couplings. From the 
imbedding of the Lie derivative of a field, the theorem relating to invariance 
of the imbedded field equations under S 0 ( 4 ,  2) and the Minkowski space 
equations under the conformal group is proven. It is found that the theorem 
must be stated more carefully than is usually done. 

2. Four-Space 

The infinitesimal generators of the conformal group or the group of con- 
formal motions on an arbitrary Riemannian space with metric gab are defined 
as the set of vectors ~(a), such that 

-.~ gab = Vb~a + Va~b = 17gab (2.1) 
~(0 

where ~ is the Lie derivative operator, o is an arbitrary scalar field and V a  

is the covariant derivative (Yano, 1955). The case where o - 0 gives the group 
of motions of the space. For Minkowski space/1//4 this is the Poincar~ group. 
In an arbitrary n-dimensional space the group of conformal motions may 
range from order 0 to order ½(n + 1)(n + 2). The maximum order is found in 
conformally flat spaces. 

Conformally flat spaces are those whose metric differs from a flat space 
metric by a multiplicative scalar field. That is for the case of ordinary space- 
times gab = P2rtab, where P is an arbitrary scalar field, and ~Tab is the Minkowski 
space metric. All spaces whose metrics differ only by a multiplicative scalar 
field have the same group of conformal motions. Changing a metric by a multi- 
plicative scalar field is called a conformal transformation of the metric. It is 
easily seen from the form of the Lie derivative that o = ½Va~ a. 

In spaces conformal to Minkowski space (label them C4's) the conformal 
group is given in terms of its four well known subgroups: 

the six parameter, mab, homogeneous Lorentz group, 

y ,a  = era% yb  

with generators 

(i./) - v tu,) ~., -- 8~2) 8(~ )) (2.2) 

the four parameter, t a, group of translations, 

y,a = ya + ta 
(2.3) 
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the four parameter, u a, group of uniform accelerations, 

y,a _ ~a + (r?mnymyn)ua l 
[1 + 2rTrsyru s + (Brsbtru s) 07ygyfyg)] 

(2.4) 
~a(o = (r~rsyr y s) 8{i) -- 2y%lr(i)y r 

and the one parameter, k, group of dilations, 

y,a = ekya 
~a =ya (2.5) 

We will take a theory as invariant under the conformal group if solutions 
of the field equations of the theory are mapped into solutions of the field 
equations by the conformal group. For a theory in which the sorutions are 
linear geometrical objects ~ / )  (Yano, 1955), satisfying the field equations 

A 
003 [~(0] = 0 (2.6) 

• A there is a natural mapping of ~(i) induced by the group and this requirement 
takes the form (Anderson, 1967) 

~r A 
O03 [~(i)] = 0 implies (2.7) 

where e is an infinitesimal parameter and ~a an arbitrary generator of the 
conformal group. Scalars, vectors, tensors and tensor densities are linear 
geometrical objects. On the other hand spinors, as they are defined on the 
frame bundle over the space not the space itself, are not by the standard 
definitions geometrical objects and thus have no straightforward natural 
mapping under a Lie group defined on the space. A discussion of their in- 
variance is therefore mathematically more ambiguous and will not be covered 
here. It would also be possible to define other mappings of the ~qA) under the 
conformal group and use these rather than the natural mapping to define an 
invariance, but we will also not consider these possibilities. 

For illustrative purposes we will look at one curved space generalization of 
the zero rest mass Klein-Gordon equation• We will restrict ourselves to the 
standard four-dimensional space-time of general relativity. This equation reads 
(Penrose, 1964) 

where S is taken to be a scalar density of weight W, and R is the curvature 
scalar. [The sign conventions used are throughout this paper those of Anderson 
(Anderson, 1967).] Then we wish to examine if 

(gabVaV b + R ) ( s +  e ~ S ) = 0 ~  (2.9) 
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For this we will need for the conformal group the commutator of the Lie 
and the covariant derivatives acting on a tensor density of weight W. This is 
given by (Yano, 1955) 

[ ~ ,  Va] T~:" = 2~aaf T{ : : : -  I ~  T~::" + . . . . . . . .  W 2~a T~':" (2.10) 

where 

b 
= ½(Sa°Of + 8 p o  a - obgaf) (2.1 t) 

af 

% =- VaO (2.12) 

We see that the commutator vanishes for the special case of motions, and also 
when T is a scalar field, but does not in general vanish even in flat space for 
conformal motions which have non-constant o. We will also need that (Yano, 
1955) 

Vaa a = ½[ ~PR + oR] (2.13) 

We can now compute 

= _ o j b V a V b S  +g~b 2e ( % V b S )  

+ ( ~ R ) S  R 
- - + - - ~ S  
6 6 

which using equation (2.10), (2.11) and (2.13) gives 

R S -og"b%v~s + g~%vb(fs) + -g 7 s  + (~R) 7 4W°~ V~S 

so that for W = ¼ 

+ O~VaS -- ~ W S ( ~ R  + oR) = 0 

(gabVa~b +6)( fS)= 0 (2.14) 
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This result also holds in the special case of  flat space where R = 0 and in a 
rectilinear coordinate system the covariant derivative is the partial derivative. 
Thus we have that for the ordinary zero-mass Klein-Gordon equation it is 
conformally invariant if and only is S is considered to be a scalar density of  
weight k. 

I f  invariance is required just under homothetic motions, that is conformaI 
motions with (r a constant scalar field, then we have no restriction on the 
weight of  S. In Minkowski space the dilation subgroup of  the conformal group 
has a = 2K so that it is a homothetic motion. 

Continuing in M4, we consider other terms added to equation (2.8) 
(Carruthers, 1970) so that we have the equation 

r f f b V a V b S  + m 2 S  - 3gS 2 - 4 f S  3 = 0 (2.15) 

We first note that for equation (2.15) to hold in an arbitrary coordinate 
system, and thus to have a geometric meaning and also to be extendable to 
situations where general relativity is necessary, all the terms must transform in 
the same way under mappings of  space-time onto itself. That is i fS  is a scalar 
density of  weight If, "t'l ab V a V b  S is a scalar density of  weight If, so that m 
must be a scalar field (a scalar density of weight 0), g a scalar density of  
weight - W and f a scalar density of  weight - 2if. 

For S of  weight ¼, m = O, g = 0 equation (2.15) is invariant under the 15 
parameter conformal group of  Minkowski space. But if we want f as m is to be 
a constant in all coordinate systems we must take S to be of  weight 0. In this 
case we are breaking conformat invariance in a very subtle way by changing 
the type of  geometrical object in our field equation. 

At various times the idea of  a conformally invariant mass term has been 
raised (Barut & Haugen, 1972). That is allowing the mass to transform under 
the conformal group in such a way as to make equations with mass type terms 
invariant under the group. The requirement that all terms in a field equation 
transform in the same way limits and in some cases makes this idea impossible. 
In the case o f  equation (2.15) if the mass is a constant in a rectilinear coordi- 
nate system it must stay the same constant under all groups of  transformations 
and in particular cannot pick up powers o f  • under conformal transformations. 
That is, under our definitions the massive Klein-Gordon equation can never be 
made conformally invariant. 

The scale dimension of a classical field is defined (Carruthers, 1971) as l if 
for the coordinate transformation 

T ' ~ . =  l a . p TK:  (2.16) 

y'a = pya (2.17)  

For a tensor density of  weight If  

i ta 

T'g::: = J W T m " "  Oy'" Oy n (2.18) 
Oy m Oy 'b 

I 
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Using equation (2.17) 

so that 

R. F.  S I G A L  

•y ta 

j = p-4,  oym = Pfm a (2.19) 

T'~: 2" = p- (aw+ i-l)T~:.. (2.20) 

Thus S has a scale dimension - 4 W  = - 1  for equation (2.8) to be conformal!y 
invariant. 

It is a necessary condition for equations to have a geometric meaning, that 
every term has the same scale dimension. This requirement seems to be com- 
monly violated (Carruthers, 1971). Carmthers also does not seem to consider 
the transformation of  gab in computing scale dimension which is inconsistent 
with our definition, so there is perhaps some confusion over what is the 
definition of  scale dimension. 

If  we examine Maxwell's source free equations 

gab VaFb a = 0 (2.21) 

V[aFbd] = 0 (2.22) 

we also find that i fFba  is a solution to Maxwell's equations then ~ F b d  is a 
solution, ifFbc 1 is a tensor field, that has weight 0. 

3. Six-Space Formalism 

The study of  the conformal group of  Minkowski space and conformal 
invariance is illuminated by utilising the well known relationship between this 
group and the rotation group S 0 ( 4 ,  2) in the six.dimensional flat space R 6 
with a metric gAB of  signature -- 2. That is there exists a coordinate system in 
which gAB = diag (+ 1, - 1, - 1, - 1, - 1, + 1). (Grgin, 1968; see also for further 
references and discussion Mack & Salam, 1969; and Barut & Haugen, 1972). 
We will follow Grgin in exhibiting the relationship between the groups, but 
then obtain the relationship between geometrical structures and field equations 
in R 6 and an arbitrary C4, rather than just R 6 and M4. We will through this 
approach obtain a dearer insight into the geometrical nature of this relationship. 

The relationship between R 6 and C4 is most easily exhibited by using a 
partially null coordinate system in which the metric has the form 

= , = ( 3 . 1 )  

12 O/ l½ O /  

Upper case Latin index letters run from 0 to 5, and lower case letters from 0 to 
3. ~aa is the Minkowski metric, r~ab = diag(+l, - 1 ,  - 1 ,  -1 ) .  We label t h e R  6 
coordinates by x A = (x a, x 4, xS), and we will let x 4 = ~2 and x s = ~I'. 
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The tangent vectors to the coordinate lines x A are given by 

~x  A A _ _  
e~b ) = ~X  b = ~)b A ,  4f'~) = ~ x A  ~X a ~g2 .... 5 4 A '  e(q,)= ~'-P =85  A (3.2) 

O (3.3) eA (B) ~ r~AOe(B) 

rl e A e B (3.4) A B  (E) (F)  -= 7"/(EF) 

so that 

We also define 

and 

e A e A ( a ) e ( ~ )  = 0 = eA(,V) (,I,) 

A eA(,v)e(n) = 2 
(3.s) 

d) =__ f l A B X A x  B = f labxax  b + 4f2qz  (3.7) 

The surface cb = 0 is a null cone with vertex at x A = 0, and will be tabeted Ns. 
A general element of  SO(4, 2) is given by 

X tA = E A B  X B  
(3.8) 

E A B  = exp(r lAD eDB) 

where eDB is all arbitrary constant skew-symmetric matrix. The transformation 
x 'A = E A B  x B  induces a non-linear transformation on the ya's given by 

x'a - EBaxB (3.9) 
y'a= ~, £F4X P 

When we restrict the x A ' s  to the surface • = 0, which is mapped into itself by 
a rotation, the induced transformation of  the ya's is identical to the action of  
the 6'4 conformal group in a rectilinear coordinate system. 

The infinitesimal generators ebb  can be expanded in terms of  the basis set 
A e(F),  and this is the decomposition that leads to a direct identification with 

the various subgroups of  the conformal group on C4. For 

eBD = Mba e(b)Be(d)D (3.10) 

where M ad is an arbitrary anti-symmetric tensor 

X ~A = X A + r lABMbde(b )Be (d )DXD 

ta X a - + j ~ l a d X d - y  a + M a d y  d (3.11) X 
yea = - ~ -  f2 

where we raise and lower lower case Latin indices with the Minkowski metric. 
Equation (3.11) is in the form of an infinitesimal homogeneous Lorentz 

X a 
ya _ (3.6) 

~2 
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transformation, so that eBD in equation (3.10) corresponds to the Lorentz 
subgroup of  the conformal group. 

Choosing: 

~:DB = tae(a)[ DeB] (,Is) (3.12) 

imptiesy,a = ya + t a, 

implies 

and 

implies 

eDB = Oe(a)[ DeBI ('4") 

I 

y'a = (1 + 0-'-'~ ya 

e'DB = 4uae(a)l DeB] (a) 

(3.13) 

(3.14) 

y'a = ya + u b [flefyeyfsba _ 2ya~bfyf] 

It is interesting to note that it is only in the case of  the uniform accelerations 
equation (3.14) that we need to make use of  the restriction • = 0. 

We will now proceed to relate geometrical objects on R 6 to corresponding 
objects on Ca. To make this relation we will use the fact that we have a rela- 
tion in the ya's between our R 6 coordinate system and a rectilinear C4 coordi- 
nate system. To make this relationship we formally introduce a new coordinate 
system on R 6 

yA = (ya, y4, yS) (3.15) 

where we need to introduce some criteria to specify 

y4 = O0 = f (x  A) (3.16) 

yS =h(x  A) (3.17) 

From the group representation mappings, we have that the relationship 
between the spaces should be the product of  projecting into Ns and then the 
projection into the quotient space whose points are the curies ya = const. 
(For a general discussion of  hypersurface projection see Eisenhart, 1927. 
Particular cases of  projections into quotient spaces are found in Bergmann, 
1942 and Geroch, I971 and t972.) It is standard in projecting into hyper- 
surfaces to take one of  our new coordinates to be given by the equation of  
the hypersurface. Thus we take 

y8 = h(xA)= cI~ (3.18) 

Of course any function f(¢5) that vanished if and only if • vanished would do 
as well, but doing this would make no significant change in our relationships. 
The (ya, y4)  are now a set of coordinates for points in Ns. The projection into 
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a quotient space is basically an operation in classical projective geometry. It is 
standard in this field to take f ( x  A)  to be a homogeneous function of  non- 
zero degree. We will take f ( x  A)  to be a function only of  (x a, f2) and to be 
homogeneous of  degree 1. Some other degree of  homogeneity would again 
not make a significant difference, f ( x  A) is taken independent of  'P as ~) is the 
coordinate we eliminate by the ~ = 0 condition, x a and f2 being needed to 
construct the quotient space. 

We can now proceed to invert the equation set (3.6), (3.16) and (3.18). We 
first note 

y 4  =__ CO = f ( x ~  a )  = Y~2f , 1 =-- • f ( y a )  

or  

CO 
a = f (3.19) 

implies 

x a - ~ a ( 3 . 2 0 )  
- f y  

f~I' ~ y a y  a ~, - ( 3 . 2 1 )  
4co 4 f  

It is also useful at this time to define 

3x A 
Ka A - (3.22) 3ya 

3x A 
u A = (3.23) 

3co 

Ox A 
r A =- (3.24) 

KA a =- 3x A (3.25) 

of 
fA = ~x A (3.26) 

3~ 
~A -= 0XA (3.27) 

Jo - det [~y~]  - ~y~ (3.25) 

We note that Ka A, v A, "c A, are contravariant vectors and KA a, )cA, ~A covariant 
vectors under change in the R 6 coordinates, while Ka A is a covariant and KA a 
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a contravariant vector under change in the Ca coordinate system. (Ka A, t/a, r A) 
forms a set o f  basis vectors on R 6, whose dual basis set is (KAa, fA, ~bA). That is 

KAaKb A = 8b a, pAfA = I, CbA rA = t (3.29) 

and all other products are zero. Also 

~Ad) A = 4cb, TATA = O, PAP A = --Coil 2 (3.30) 

A geometrical object defined on 6"4 will just be a function of  the ya's. That 
is it must correspond to an object in R 6 which on Ns is a homogeneous 
function of  (x a, ~2). We will further assume that the objects are homogeneous 
in x A everywhere. In the neighborhood o f N  s we can expand any homogeneous 
scalar field which can correspond to a scalar field on Ca in a power series in 
given by 

S=So(xa, a)+rbSl(xa,  a )+  "" '+qonSn(xa, a ) + . . .  (3.31) 

where if S is homogeneous of  degree h, Sn is homogeneous of degree h - 2n 

So(xa, fz)=g2nSo(Y a, 1)=f2n'o(ya) = con[~n So(ya) ]  (3.32) 

For n v~ 0 we have two natural choices for a scalar field on C4S4(y a) given by 
So and So/f  n = So. In the special case o f M 4 , f  = 1 and So and So. We will see 
that if we wish to treat the metric in the same way as all other tensors we 
should choose So, but we should keep in mind that in some cases it will be 
necessary or may be desirable to use fm~;o where m has some other value. 
This ambiguity is not  removable as the geometrical character of  an object does 
not necessarily completely determine how it should transform when the 
metric of  the space is conformally transformed. 

The inverse mapping of  a scalar field on C4, S(4)(ya), is some element S of  
the equivalence class of  scalar fields on R 6 that have 

~'2nS(4)(x-~)f l x(-~)=So(xa, g2) 

where n and t are arbitrary, n is chosen so as to determine the degree of  
homogeneity of  S. 

For any tensor density TA:;; of  weight W on R 6 we can define 

a . . . . . .  (3.33) T;.,. Jo WKAaKbB " TA'"" B , , °  

which is a set of  scalars of  weight 0 on R 6. In our x A coordinate system 

A 
TA = - - 6  s (3.34) 

4f2 

~A = 2X a (3.35) 

q~A 2~b 
v A= - -  7" A (3.36) 

2f f 
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1 
K A  a = --~ (~A  a -- f~aTA) (3.37) 

g a  A = ~2(~ 2 - f a v A  - TAdpa) ( 3 . 3 8 )  

gz 4 

Jo = 4 f  (3.39) 

so that if T~'.'." has k contravariant indices and l covariant indices and is homo- 
geneous of  degree n, Tg::: is homogeneous of  degree (n + 3 W + l - k) = r. Each 
homogeneous Tg::: as it is a scalar can be mapped into a function T(4)~'.:: = 
- m  a . , ,  f Tob... where m can be of any value. Under change in the C 4 coordinate 
system T(4)g:'" transforms as a tensor density of  weight I4/. 

Given a tensor density of  weight W on C4, the inverse mapping is given by 

Tf~... KB b . TIB.." . .  g2 f T(4)b . . "  + "' . . .  

(3.40) 

a , , .  where T~ b... is an arbitrary function of  (xa, ~2) and A... ~ B . . .  is a tensor density 
of  weight W, such that the contraction of  at least one index with a projection 
operator KAa or Kb B gives zero. That is 

0 =  a A B A. KA T±B::" or 0 =  K b T±B .'" or . . .  (3.41) 

As 

n - l  a a . . .  
(~'2 f T(4)b:: : + ~5Tlg::: + . . . )  = (3.42) T ~ . , ,  

we have from equation (3.33) that 

T~.'.'" = K E  A K B F  . . . TE; "" + T±~::: (3.43) 

K E  A = g a  A K E  a = ~E A -- f E  vA  -- TAd)E (3.44) 

K A 
i f  we define a homogeneous function TB;::  by 

~-A . . . .  t l  A t /  F E . . .  
B.. .  - ,~'E '~B " "  T~. . .  (3.45) 

K A 
then TB:'"  represents a C4 tensor in R . KE A is a projection operator so that 

KE A KB E = KB A (3.46) 
K 

and thus acts as 6B A on TA:: :  type tensors. 
The projection operator from R 6 to C 4 can be written as the product of  

a projection operator into N s  and a projection operator into the quotient 
space of  curves y a  = const. If  we define the hypersurface projection operators 

he~ A = 6oL A - -  T A  ¢~o2 (3.47) 

hA a = ~AC~ ( 3 . 4 8 )  
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and the quotient space projection operators 1[ 
j a=__~ 8 a _ x  a (3.49) 

J a a = a I 6 a a - l x ' ~  Of I f  ~x a (3.50) 

where a runs from 0 to 4, then 

Ka A = Jaahc~ A (3.51) 

KAa = jcahAC~ (3.52) 

We obtain the interpretation of f (x  a, g2) in our formalism by projecting the 
metric ~AB ° fR6  into C4 

(..d 2 

gab =" K A  KbB~AB = ~2Ttab = ~-2 Tlab (3.53) 

so that 

1 
gab = -fit rlab (3.54) 

gives an arbitrary C4 metric with conformal factor f -2. One can choose to give 
various 'physical' interpretations to the co that appears in gab. See for example 
Barut and Haugen (1972) or Kastrup (1966). From (3.54) we see that taking 

co = f ( x  a, a )  = a (3.55) 

in our projection operators restricts them to projecting into flat space. With 
this restriction to flat space it is easily seen that our prescription for relating 
six-dimensional structures to four-dimensional structures reduces to essentiallly 
the same form as is found in the previously cited works. 

We define ~A to be an arbitrary generator of SO(4, 2) so that 

~ A = ~TAB eBEXE (3.56) 

Then 

~A = ~0 A + ~,A#~.S (3.57) 

~o A = r~A~ eBe ~eex ~ + ~4egZ -- ~ (Vr, XrX ") (3.58) 

It is then easy to check that 

~a = KAa~O A (3.59) 

is a homogeneous function of degree zero in x A and is an arbitrary generator of 
the conformal group, as it must be if the projection from R6 to 6"4 is consistent. 

We have implicitly used three types of coordinate transformations in relating 
R 6 to 6"4. We will now look at these in more detail. The first type of coordi- 
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nate transformation is a change in the R 6 coordinate system but no change in 
the C4 system or in the relationship between R 6 and C4. That is 

X tA  = ~ A ( x ) ,  X A =_~A(x ' )  (3.60) 

Then if 

4 = y4 = f ' ( x  ,) = f ( x )  (3.61 ) 

y~s = y S  = ~ ' ( x ' )  = ~ ( x )  

a . . .  all our projection operators transform as vectors and T(4)b.. ' transforms as a 
scalar. 

The second type of  transformation is a coordinate transformation on 6'4, 
but no change in R 6 or the relationship between them. That is 

X a 
~a = (ffa(yb), ya = ~a(.~)=__~ 

(3.62) 
~ 4 = y 4  = f (x ) ,  ~5 =y5  = ~  

Then Z(4)gi'" transforms as the appropriate type of tensor density. That is the 
method we have for relating R 6 with C4 is independent of what coordinate 
systems we work in, even though we have evaluated the relations in a simple 
set of  coordinates. 

The third type of  coordinate transformation is an induced coordinate 
transformation. That is 

x,A = y A  (X) 

~ 4  
(3.63) 

4 = i ( x ' )  = a ' ?  x , 1 - 

[ f ~ a / . ~ 4  ]~=o is just a function of  the ya ' s th i s  generates a coordinate trans- 
formation on 6"4. That is given a tensor density T(4)~II I on C 4 

~ a... = e... (3.64) T(4)b"" Of t I aye o~b • • " T(4)f. 

We can now also consider the quotient space in N5 defined by the curves 
~a = constant, and the projection of  tensors into it. We thus define 

~'ab. :. ==_~m 3x'R W @a 3X'BT,~:Z: [ (3.65) 
aTv v ax 'A aTv t, ®=o 

I &=l 
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T ' ~ "  is a function of just the ~a's and can be taken as a tensor density of 
weight W under change in f a  coordinates. We can thus examine when starting 
with the tensor density A... T~.. .  (x E) under what conditions 

T(4)b...~ a... = ~'~: :: (3.66) 

We have using the relationship between x '  and x 

TA.. .  
f 'g : : :  = ? , 8 - ~  8yFI 8x A @t~ " "  B... ~,:o (3.67) 

c5=1 

and 

where 

~ a... aye W a,y a a x A ~ m  axR W +y e E...] 
T(4)b. - Bfpf aX A aye OyT[ aX E " "  T~... +=0 (3.68) 

=](ya) 
Thus we get immediately from the Jacobians and the dependence on fand)~  
that 

.~4 = f ( x ' A )  = f ( x  A) =y4 (3.69) 

for (3.66) to hold. We also need 

aY+ rA = aF° l ax A ax A KE A T E (3.70) 
~ = O  

and 

axa 3xA KAETE ~= (3.71) 
aY a TA - ~Y a 0 

Thus it is sufficient that axA/~yy a and o~a/oxA are members of the set of 
K K 

' T~... is a member of the set of T:I type tensors T~I type tensors or that A . . . .  
when evaluated on N s. 

It can be verified that when ~ ' A ( x )  is an arbitrary element of SO(4, 2) 
K 

axa /@ a [~,=o is not a T:~ type tensor, due to the elements of the group that 
are identified with the uniform accelerations. It is also true that for the rota- 
tions considered as an active group mapping the space of tensor densities onto 

K 
itself the set of T: :: type tensors is not mapped into itself, so we must look 
closer at the induced transformations of the rotation group. 

In infinitesimal form an element of SO(4, 2) is given by 

x ,A =X A + r~ABeBT, x T  = X A + ~A (3.72) 

X A =X tA __ ~ABeBTXtT 
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Putting equation set (3.72) into (3.70) and (3.71) results in the sufficient 
condition for the satisfaction of equation (3.66) is that 

TA.'.'," CI~ A = TA.'.'." q~  = . . .  = 0 (3.73) 

The set of  tensors that satisfy (3.73) goes into itself under the mapping of the 
rotation group. The metric T A B  does not satisfy any of  the previous conditions 
but it can be checked that for SO(4, 2) it satisfies (3.66), when (3.69) holds. 

As has been stated before some sort of  homogeneity condition in x A is 
needed for objects on R 6 associated with C4 objects. Homogeneity conditions 
are related to intrinsically coordinate independent conditions involving Lie 
derivatives. I f  we have a tensor density TA'.'. • on R 6 which is homogeneous of  
degree n in x A ,  then 

T A ' . ' . ' , s X  s = nTA.'.'." (3.74) 

In the x A coordinate system q5 A = 2 x  A so that 

and 

½ ~e TA.... A.,, R (T~ .... Rx  kT¢~.'.'." + ; r ~ : : :  ~ A .. = - + 6WT~. ' . ' . ' )  (3.75) 
ape 

2 '  r~.'.'." = +2(n - k + l + 6 W ) T f ~ : - -  (3.76) 
~E 

is equivalent to homogeneity in x A of degree n. 
If T(4)g:: I is a tensor density on C4, then T(4)~I" considered as a set of  

scalar fields on R 6 is just a function of the y a ' s  and satisfies 

= 5¢ T(4)g:'" = 0 (3.77) 
~co ~A 

The set of  all tensor densities TA.'.'. • on R 6 such that 

T~::: = JoWKAaKbBTA. ' . ' . "  (3.78) 

and 

co n 
Tog::: = ~m T(4)~:'" (3.79) 

where n can take any value but m is fixed, correspond to T(4)~:~ : . It is easily 
checked that the Lie derivatives with respect to v A of Jo, a scalar density of  
weight - 1 ,  and of K A  a and K b  B, covariant and contravariant vectors respect- 
ively vanish, so that equation (3.77) implies a condition on the Lie derivatives 
of TA.'.'. "'s that are mapped into C4. In the x A coordinate system 

ae r~...... I®=o -- r A : ' : R x  R - ;~r~...-. + ;TA.'.'." + 3 Wry.'.'." 
v E 

= f T ' ~ . ' y  - 3 W T A ' . ' .  • (3.80) 
, E  
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The condition implied by equation (3.77) is 

5e T~y.'l®--o = ccT)~.'.'." + Jl~:] ]  (3,81) 
v E 

where ~ is a constant. Thus the homogeneity condition (3.74) is stronger than 
necessary, but it seems to be tile most convenient condition to impose. It  also 
seems that the Lie derivative with respect to v A is the more relevant one to 
look at. From equation (3.80) it is clear that equation (3.74) also implies that 
on Ns Lie derivatives with respect to v A take on a simple form. 

To finish the relationship between R 6 geometry and C4 geometry we need 
to find the relationship between the R 6 covariant derivative and the C4 
covariant derivative constructed using the C4 metric gab = (1/)~2)~ab" We will 
find this relationship for the case of tensor densities related by 

T(4)~::: = frnT~:::  = f m J o W K A a g b B  . . .  T~.'.'." (3.82) 
®=0 ®=0 
Ca9 = 1 ¢a9 = 1 

where the T~.'.'."s are restricted to the set of ~A;i"  type tensors. 
We first calculate in the related x A, ya coordinate systems 

f m j o  W TA...., T KtTKAaKb B • . • =- T~2:: t (3.83) 

We can use partial derivatives in (3.83) as in the x A system the partial deriva- 
tive and the covariant derivative are the same. Using our definitions of the 

K A  
projection operators, T B ~  type tensors, and that noticing they imply 

W,A Ka A = fI) A Ka A = 0 (3.84) 

K ariD v B v a  v D v  B (3.85) 
D lXd, BlXb = - - I ~ D , B  lxd Lxb 

we get 
m a f  

7~: : : t=  e#=o 3T(4)~:::3yt WJo, T J o  t T(4)~::: --  f- ~ y a  T ( 4 ) ~ : : "  

c,3=1 

d , , .  A a a , , .  d --  T ( 4 ) b . . ,  K d  KA,  T K t  T • . • + T ( 4 ) d , . .  KB, T K t T K b  B • • . 

(3.86) 

From equations (3.34)-(3.39) we get 

4 ~17 
J o l J o ,  A Ka A - -  ? ~ya 

and 

K A z a  K T ~da ~ f  + ~ ?  ~ f  

(3.87) 

(3.88) 
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From our metric the Christoffet symbol of the second kind is given by 

af a? 
= -  - 7  aY b -f OY - -a  + 7 -  ~yS (3.89) 

4 af 
F a a = -  .T OY cl (3.90) 

and T(a)~:i: ;t, the covariant derivative o f  T(4)~":, is given by 
a . . . .  a , . ,  d a . .  a d . . .  

T(4)b. . . ;  t - T(4)b, . , ;  t -- WI'dtT(4)b" • + PatT(a)b. . .  + 

a a... (3.91) + .  • , - -  P b t T ( 4 ) d , . .  - -  • • • 

Thus 

T~'.',.t]® =o 
Ic~= t 

fails to be the covafiant derivative of T(4)~I'" due to the presence of the term 

Ft'/ ~ a.  

and due to the fact that - K a  A K~, T K t  T c o n t a i n s  only the first two terms of 
17~t. This is unlike what occurs in many other previously studied cases of pro- 
jections. Geroch has studied the projection into quotient spaces with respect 
to Killing vector fields (Geroch, 1971 and 1972) and Bergmann has studied 
the same question with respect to unit time like vector fields (Bergmann, 1942) 
and in both cases their equations analogous to (3.83) give the covariant deriva- 
tive in the quotient space. Israel has studied the projection into three- 
dimensional space like hypersurfaces and again the equation analogous to 
(3.83) gives the covariant derivative generated by the projection of the metric 
(Israel, 1966). 

If  we fix m = W in (3.82) and define a new affinity on R 6 given in the x A 
coordinate system by 

AAD = fIBD'qAF KF G (log f2), G (3.92) 

and define TBA';.'I r as the covariant derivative calculated using AAD then 

T(4)~*,:.;t = JoWfWKAaKaB . . . KtTTt~.".'IT (3.93) 
¢ ' = 0  
c o = l  

It does not seem clear why this value ofrn is required and why R 6 has to 
carry a non-metric generated affinity to get the C 4 covariant derivative in 
terms of a R 6 derivative, 

For the case of projecting into M4, ABAD is easily calculated to be zero. It 
also follows directly that if we define GAB , the K type tensor that represents 
the C4 metric, 

GAB =- KAE KBF rlEF ( 3 . 9 4 )  
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then 

as would be expected. 
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K AE K I  KTH GEFI H = 0 (3.95) 

4. Four-Space FieM Equations Imbedded in Six-Space 

With the formalism that has been developed in the preceding section it is 
straightforward to imbed a four-space equation in six-space. It wiI1 be sufficient 
for our purposes to just consider the mapping to be from M4 to R 6. In this case 

oo - f ( x  a,  a )  = a (4.1) 

1 af 
2f  ~x A = "cA (4.2) 

Ka A = a(Sa  A -- rAq~a) (4.3) 

1 
KA a = - ~  (6A a -- c~arA) (4.4) 

Some other useful formulas for this section are: 

rA, B = -- 2r A r B (4.5) 

K~,B = --4r(A K~) (4.6) 
A Ka, B = -- 2rBKa A -- 2rA "OBT Ka T (4.7) 

All equations in this section will use these specializations to flat space. 
We first look at the imbedding of  the zero mass Klein-Gordon equation, 

which was first studied by Dirac (Dirac, 1936). Starting with the Ma equation 

Oy---~ S(4 ) = 0 (4.8) 

S(4) being a scalar density of  weight W we take S as our R6 representation of 
S(4), where 

S = S o  +~$1 + . . .  

S o = cornS(4) (4.9) 

That is 

So(x A) =JoW~'~ms(4) tx'~ ) 

= 4W~-3W+ms(4)(xa/~'~) 

and S is homogeneous of  degree v = - 3 W  + m. Since 

~7 ab = ~2KAaKBb~AB 

(4.10) 

(4.11) 
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~y~ = Ka A ax A (4.12) 

~2,A Ka A = go,A Ka A = 0 (4 .13)  

equation (4.8) reads on Ns 

'Q2BMNKIvlaKNbKaA {KbB[Q-V(So  + dPSt + " " ")],B },A = 0 (4.14) 

Expanding equation (4.14) gives 

TIABS,A B -- 4@ + I )TAS, A = 0 (4 .15)  

on Ns. 
We notice that for any Sn, homogeneous of degree v - 2n and just a 

function of (xa, f2), gons n satisfies equation (4.15) on Ns. For v = - 1 
(equation 4.8) is thus equivalent to the equation set 

~AB S, A B = gOT 
(4.16) 

S, A go A = - 2 S  

where T is arbitrary. This set of equations is clearly invariant under SO(4, 2). It 
will be necessary to carefully discuss later how this is related to the invariance 
under the C4 conformal group of equation (4.8) for W = ¼. It is important to 
note that as we are interested in using the six-dimensional formalism to study 
conformal invariance it would not have been useful to imbed by taking all 
terms but S o equal zero in equation (4.9) as this would have added a further 
constraint condition to the set (4.16), namely 

S,A rA = 0 (4.17) 

and this condition is not satisfied by f~a~A S even modulo equation set (4.16). 
In general when imbedding 3/4 equations in R 6 only constraint equations that 
do not break invariance under $0(4,2) should be chosen. 

The mass Kline-Gordon equation, with v = - 1 ,  takes the form on Ns 

~22~MNK~fKNbKa A {Kb B [ Q - v ( s 0  + gOS1 + .  • -)],B},A 

+m2g2-v(So + gOS1 + . . . )  = 0 (4.18) 

which again expanding out gives 

m 2 
@ B S ,  AB + - - ~ S  = gOT 

(4.19) 
S, A gO A = - - 2 S  

so that invariance under SO(4, 2) is broken by the ~2 -2 multiplying the m 2 
term in equation (4.19). Equation set (4.19) is of course invariant under the 
subgroup of SO(4, 2) that is mapped into the Poincar6 group. 
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As another example we imbed the dilation invariant, but non-conformally 
invariant 2144 equation 

~ab ~_._~ [ ~ | ,17a b (}S ~S aya \ ~yb ] + Oya aya = 0 (4.20) 

in R 6. We notice that for this equation to be well defined S(4) must be a scalar 
density of weight 0, and S must be taken to be homogeneous of degree 0. 
Equation (4.20) then goes to 

"QAB(S,A B + S,AS,  B ) + 4TA(SS,A -- SA)  = qbT 
(4.21) 

S A(~ A = 0 

Equation set (4.21) is non-invariant under S0(4, 2) due to the non-removable 
presence of a term containing T B. In general as 

A 7",B = - -27  "A 7"B, ~'2,A = +2f27" A ( 4 . 2 2 )  

M4 equations imbedded in R 6 will be non-invariant under S0(4, 2) due to the 
presence only of non-removable factors of f2, or rA. The factors of  ~2 arise 
from mass type terms, and the r A factors come from derivative couplings. It is 
clear they are of a fundamentally different nature. The presence of r A in the 
R 6 equation is related to the non-variance of the 344 equation under the moving 
of infinity in 344, while the presence of f2 is related to non-invariance under 
scaling. It should be noted that the Lie derivative of ~_A with respect to the ~A 
that represents the dilations equation (3.14) is zero, so that imbedded equations 
that have only ~.A in them will be dilation invariant. We thus have that any 
type of broken conformal invariance will correspond to the presence of only 
two distinct types of terms in the R 6 equations. 

As an illustration of the imbedding of tensor fields we will imbed Maxwetl's 
equations (equations 2.21 and 2.22 in R 6. This again was first done by Dirac 
(1936). We represent F(4)a b by a homogeneous, of degree f, anti-symmetric 
six-space tensor FAR. FAB can be written as 

FAB =~abKAaKB b +EaK~AT"BI +HaK~AdPB] +h'iACbBl (4.23) 

where 

FABKa A Kb B = Foat~ + ¢bFlab + • • • (4.24) 

F(4)ab = f2 -P Fab I ~ = o (4.25) 

p = f + 2 (4.26) 

and Ea, H a and I are not determined by F(4)aa. It is clear that we can impose 
everywhere the S0(4, 2) invariant condition 

FAB q)B = 0 (4.27) 

which implies defining 

B A =- HaKA a = FAB vB (4.28) 
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that 

NAB = FabKAaKB b -- 4cbB[A 7B l + B[A rbB l (4.29) 

In the same way as for the Klein-Gordon equation, we get the R 6 equation 
set (4.30) equivalent to (2.21) to be 

~BDFAB, D = -- 2 [f  + 2]FAB 7"B -- FMB ' DrlBD~ A T M 

= O~TA (4.30) 
NAB ' Cd2 C = 2 f F A B  

NAB KbB = 0 

For f = - 2 ,  we have the first equation of the set as 

7"IBDFAB, D [(~ T A -- 7A qbT] = d~TA (4.31) 

We of course desire the stronger condition 

rfiDFAB, D = cbr~4 (4.32) 

as our representation of the M 4 Maxwell equation. For equation (4.32) to 
hold it is necessary that not only f ( 4 ) a  b satisfy equation (2.21), but also that 

BA,A = cbD (4.33) 

Since f ~ F  FAB satisfies equation (4.27) it can be again expanded in the form 
of equation (4.29), and then since it also satisfies equation (4.32) it will have 
its corresponding element B~ satisfying 

B ,A ,A = qSD (4.34) 

so that condition (4.33) does not break S0(4 ,  2) invafiance. Thus we have that 
equation (2.21) on M4 is equivalent to the S0(4 ,  2) invariant set of equations 

"rlBC F AB, C = cb T~4 

FAB, C cbc = --4FAB (4.35) 

FABd~ B= 0 

With the constraint conditions of equation set (4.35) along with the further 
imbedding condition 

BD, A - - B A ,  D --4BA'rD + 4BDT"A + F l a b g ~ A K b l  =d~['t/AB (4.36) 

Equation (2.22) on M 4 is equivalent to 

F[ AB, C] = d~TABc (4.37) 

Condition (4.36) is again allowable due to equation (4.37). 
It is interesting to note that the homogeneity condition which puts Maxwell's 

M4 equations in their S0(4,  2) invariant form on R 6 is the one that puts on Ns 

~vA FAB = 0 (4.38) 
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This is unlike the case of  the zero-mass Klein-Gordon equation with W = +1. 
In many cases of  imbedding in projective spaces one assumes a relationship 
such as equation (4.38), as the basic condition of  imbedding. 

As we have said before it is necessary to carefully examine the relation 
between six-dimensional equations that are invariant under S 0 ( 4 ,  2), and the 
invariance of  the corresponding four-dimensional ones under the conformal 
group. Invariance is taken again in the sense of equation (2.7). That care is 
needed for this examination is shown by the fact that  a M4 scalar field of  any 
weight, satisfying equation (4.8) can be mapped into equation set (4.16), but 
only for I4' = ¼ is the M 4 equation conformally invariant. Also with the non- 
invariant SO(4,  2) constraint equation (4.17), equation (4.20) clearly can be 
represented as a conformally invariant equation. 

To study this question we first need for tensor densities on  M 4 and R 6 

respectively the relationship between the four-dimensional Lie derivative with 
respect to ~a, and the six.dimensional Lie derivative with respect to ~A. For a 
tensor density of  weight W on M 4 

T(4)b..- - ~yt  ~t -- T(4)b... ~,t - - .  - - + T(4)t.. ~,b 
o . . . .  t . . .  a 

~ t  (4.39) +" " ' + WT(4)g~I: ~yt  

A . . ,  A tensor density T~...  of  weight If  and homogeneous of  degree t o n  R 6 can 
be expanded in a basis set consisting of  Ka A , 7 "A ,/.t A and its dual basis, KA a, 
qSA, rA, where 

I aA = 2 g2v A (4.40) 

Then 

T~"." = 7"41:: KaA KB b . . . + T[:;: r A K e . . .  + . . . +  Tg::'rBK~ . . .  

+ . . .  + r ~ [ " K B b l  aA . . . + . . . + T ~ . ' . ' K A ~ B  . . . + . . .  (4 .4i )  

K A  
T f 3 . 1 1 .  ~ a .  . . , , .  = T~. . .  KaaKB b (4.42) 

and 

4-Wg2- ( t - k+ t )~o~: : :  a... = T(4)b... (4.43) 

T~.'.'." ~A = T~.'.'." ~B  = . . .  = 0 (4.44) 

if and only if in expansion (4.41) all coefficients multiplying terms with r A in 
them are zero. 

~E 

As 

A . . .  A . . .  .R R . . .  A A . . .  = + . . .  Ta. . .  - T~, . .  ~,R + Tj~ .... R ,{J (4.45) 

~,~ = 0 (4.46) 
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it does not  appear in equation (4.45). To relate equations (4.39) and (4.45) we 
also note that 

5¢ q9 = 0 (4.47) 
~A 

~ # A  = _ 4 ~ R r A  (4.48) 

r A = --2TA'cB~ B + ~,ABrB (4.49) 
~R 

It is direct to calculate that 

~A rBK a ,B A ~,= 0 4= 0 (4.50) 

We then can use equations (3.57) and (3.59) which relate ~a and ~A and 
give 

O~a = - 8TB~ B (4.5t)  
0 y  a 

to imbed equation (4.39) in R6. The result is 

K A  
"* a~ "tt~.~, I b . . . ) O ' a  l~B  • " • ~ R  T B I I  I = A + W c ' ) ( t - - k + I ) c I 6 o T a . . . ~ V  A v  b 

~a 

+ 2 ( 4 W + t - k + I ) r B ~ B T ~ : : : K a A K B  b . . . + S A ; / .  "} (4.52) 

S AT.'.'KAaKb B . . . l * =  0 = 0 (4.53) 

We thus have that for 

(t + t -  k) 
W = (4.54) 

4 

and equation (4.44) holding 

( ( f T A ' " ) K A a K b B . .  .) =4Wuz(t-k+O~LPT~'" (4.55) 
~R el, =0 ~r "" 

If  TA.'.'." satisfies a SO(4, 2) invariant set of  equations, that is it contains no 
absolute objects whose Lie derivative with respect to ~'~ is non zero, 

= + STy::: 
~R 

is also a solution to the equations. T'A:::  can be expanded in the same way as 
TA::: to give 

T'A::.  =~r'a...v A v  b " b...".a '~B " "  + ' . "  (4.56) 

If  this set of  equations is equivalent to a M4 set of  equations then ~r'A: :: l ,  = 0 
wilt be a solution to the equations. I f  equation (4.55) holds also then 
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~ T~ill + T~i 21 will be a solution to the correspondingM4 equations. 
We thus have the theorem. If  the M4 field equations satisfied by T(4)~:il, a 

tensor density of  weight l~, can be imbedded as a S 0 ( 4 ,  2) invariant set of  
field equations in R6, satisfied by TA.'.'." , which is homogeneous of  degree t, 
and in which equation (4.43) is one of  the constraint equations, then the M4 
field equations are invariant under the conformal group for a tensor density of  
weight W = - ( t  + l - k) /4 .  

Equation (4.54) clearly gives the relationship between the weight that 
makes the M4 equation conformally invariant and the degree of  homogeneity 
that makes the imbedded equation S 0 ( 4 ,  2) invariant. From (3.80) it follows 
that the condition to make the imbedded equation S 0 ( 4 ,  2) invariant and the 
condition which makes the Lie derivative with respect to v A vanish on Ns 
agree for any 0 weight tensor and for no other kind. 
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